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This paper demonstrates the application of a Genetic Algorithm, which is a randornised
search method based on the concept of evolution, to be. problem of searching for an
optimal timetable of road project construction.. The technique is particularly useful in
long term planning of an urban transportation network Our objective is to provide a
schedule that allocates yearly road construction budgets in a way that maximises
economic benefits over the planning period (for example, over fifteen years) Since the
late 1950's, many studies in the optirnisation arena have been conducted on variations
of this problem A brief survey of these studies and a comparison to the Genetic
Algorithm will be presented, A Genetic Algorithm is applied to the problem of road
pr~ject scheduling using the output from traffic assignments on a subset of the Perth,
Western Australia road network The results of the optimisation process and its
implications and value to policy-making is discussed
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Introduction

The aim of this paper is to present a new approach to solving the practical problem of
optimising expenditure on projects in an urban road system. Given an origin-destination flow
pattern, the capacity of existing roads is adjusted, or new links are added in order to
maximize net benefits. There are many variations to this problem. Fm instance, the objective
may be to minimize travel time given a fixed budget for road investments, or conversely, to
minimize the capital invested for a given level of service.. The optimisation problem at hand
has also been referred to as the network design problem, or NDP (Magnanti and Wong,
1984).

In this paper, the set of potential projects to improve the transport network are given This
differs flom the more conventional NDP problem, which includes all the links in the network
as potential candidates for improvement. The aim is to schedule this set of projects over a
working period of .y years, then evaluate the impacts of these projects over its lifetime of a
further Y years., In the schedule or timetable of projects, given a budget constraint, some
projects will not be scheduled for construction at all However, it will be illustrated later that
it is possible to extend the potential set of links to be improved to include the entire network

In the literature, it is evident that an overiding difficulty in analysing this problem is that
projects are highly interdependent in an urban mad network The sequence of implementing
projects is important It has also been shown that the problem being analysed has non­
polynomial time complexity (NP-complete) so that currently existing solution methods will
take an exponentially increasing amount of time to solve the problem as the problem size
increases

The rest of the paper is structured as follows, First a brief survey of previous work is
presented Then it is suggested that a genetic algorithm is suitable for solving this problem
and a particular GA is proposed This GA is applied to a portion of the Perth road system
Finally, some conclusions are made and further research directions are discussed

A Bdef Survey of' the Literatur'e

Among the numerous studies on the NDP, a few examine the effects of investment
alternatives over time., Long range planning in road projects is essential as roads are not only
expensive, but have a long life span. One method used is to combine linear' and dynamic
programming (Bergendahl, 1969) In that paper, Bergendahl formulates the optimal operation
of the mad network as a multicommodity flow linear programming problem.. The overall
optimal solution, including the size and time of investment is then obtained through dynamic
programming (Bellman, 1957) In this method, however, the demand between every pair of
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nodes is assumed to be known, which is not the case in a metropolitan area In addition, the
set of all possible routes at time t is evaluated using linear programming so that, for every
DOs,slble road network (or state), the minimum cost is obtained Bergendahl evaluates every
state in order to capture the interdependence between different road projects, especially in
urban areas..That is, if the capacity of a road is improved, the traffic on this road will increase
as drivers adjust their travel habits. These changes then cause the traffic patterns on
surrounding roads to change, thereby influencing the decision on which investment should be
next selected so that the network is optimised. However, in urban areas, the number of OD
pairs, possible routes and projects are typically large.. So, although this method attempts to
capture interdependence of alternative investments in urban areas, because every possible
road state is to be enumerated, it would be inefficient to use Bergendahl's method for a
realistically sized network

Frey and Nernhauser (1972) modelled a different sort of feedback between service
characteristics and flow over time.. The optimal timing of network expansion is cast as a
convex programming problem, where flows are functions of travel time, which in turn is a
function of flows.. It is assumed that the uni-modal flows will decrease as travel time
increases, and this loss of trips may be interpreted as a loss of revenue to another mode, or as
a social cost. An origin-destination (OD) pair of nodes is defined to be the potential demand
on a particular path.. That is, it is the path demand when unlimited capacity is assumed on all
the links in the network With this definition then, every OD pair is constrained to only one
path.. The authors point out that this makes the model suitable fOI application to a rural
setting, or a railway system.

Rothengatter (1979) defines interdependencies between projects as "vertical" or "horizontal"
Interactions within the same period are referred to as hmizontal, while interactions across
periods are vertical.. In the evaluation of benefits, instead of discounting the costs,
Rothengatter ranks the contribution of each time period in accordance to its importance with
respect to the staging decision. Interestingly, the last period in the planning horizon is
considered the most important, as the total project bundle is given at that stage Then, next iD
importance is the frrst period under consideration. A "correct" ranking must therefore be
decided upon prior to starting the analysis. The author rightly points out that this is normally
implicit in the discount rate However, the model imposes the constraint that there are no
vertical interdependencies. Ihis means that a project in time t may not borrow funds from
time t+ 1 as this will impose an additional constraint in time t+1.. In addition, tr'affic flows in
time t does not influence traffic flows or distribution in time t+ L The solution approaCh uses
a modified version of the branch-and-bound integer programming procedure by Boyce, Fahri
and Weischedel (1973) Since the last period is considered the most important, the backwar'ds
dynamic programming method used first computes which projects will ultimately be
implemented in the network at the end of the planning horizon, given the aggregate budget for
the entire period.. This set of projects constitutes the reduced set of candidate links to be
considered in the next most important period by branch and bound The process starts from
time period I and repeats for every period upto period Tool.
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The advantage of using genetic algorithms

Some of the modelling assumptions mentioned above can be discarded by using genetic
algorithms (GAs) because of the flexibility GAs have in coding problems In the model,
vertical interdependence in the budget constraint may be accommodated Because the GA
process essentially carries out simulations of what happens when a set of projects is
implemented in a given year, the concern that improvements on specific roads will change the
traffic pattern will also be modelled,

All the exact methods will be prohibitive to use as the transportation network increases in
size, because the discrete transportation NDP is NP-completeJ (Xiong and Schneider, 1995),
A classic example of an NP-complete network optimisation problem is the travelling salesman
problem (or TSP, where a salesman has to visit n cities exactly once and return to his starting
point) According to Magnanti and Wong, the NDP is in fact a generalised network
optimisation problem, which includes the TSP as a specific problem type, Ihe TSP has a
complete OD structure, where the demand between every pair of nodes in a network. is
known, while the NDP has an atbitrary OD structure Furthermore, the objective function in
the TSP is linear with respect to flow vatiables, and has no complicated side constraints, The
NDP requires the constraint that the minimum cost route choice is to be used for each
commodity in the network. Hence the NDP is more difficult then the already notorious rsp

•
However, the very fact that the NDP is NP-complete makes the problem suitable for solution
by genetic algorithm Not only can genetic algorithms handle computationally intensive
problems, they can also handle non-convexity in the objective function (Goldberg, 1989),
Hewistics decision rules may be used which do not consider the interdependence of flows
and improvements, However, because of the change in flow when a project is added to a
network, an addition of a link in the network may increase total travel time (Steenbrink,
1974) Genetic algorithm includes problem specific detail, but is potentially a global optimiser
and so may avoid the pitfalls of approximate methods,

Introduction to genetic algor'ithms

GAs are inspired by the process in nature where desirable genetic material from parents
combine and are encoded in chromosomes to be handed down to offspring. Offspring with
these features are then fitter and will survive to reproduce in the next generation. These
featwes then get propagated throughout the population

I An NP-complete problem is one with non·polynomial time complexity As the problem size increases, the

time needed to compute the solution exactly increases ex.ponentially. So the solution cannot be found in a

reasonable time span (see Garey and Johnson, 1979)
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then with crossover after the cutpaint, which is between positions 3 and 4, the new offspring

are:

A A A D D D D

C C C B B B B

1 5 3 4 2 6 7

5 6 7 4 I 2 3

A A A B B B B

C C C D D D D

parent2

parentl

then interchanging the elements between two cutpoints at positions 2/3, and 5/6, would result
in the following illegal strings:

parentl

parent2

child2

Crossover is a crucial step in the GA, as it is the operator where "good genes" from parents
are inherited to produce even better individuals. The simplest form of crOSsover is the
interchange of two segments of a string at a random cutpoin!. For example, if the parent

strings are:

child1

In the chromosomal representation of the problem under consideration, there is an added
restriction that no project may be implemented twice, so that the string 1234345 is infeasible,
It is clear that simple crossover may result in illegal strings To counter this problem, repair
algorithms could be written to transform illegal individuals, or crossover could be modified
so that the resulting new strings are always feasible, The crossover routine used is partially
mapped crossover (PMX) proposed by Goldberg and Lingle (1985) for the travelling
salesman problem, When crossover occurs, there is effectively a mapping between the values
of the strings, If the following strings are considered for crossover:

combination of desirable genes from parents" Finally, mutation is a method of introducing
randomness and increased diversity in the population

Tournament selection is used because it has been proved to yield superior results In this
method, two or more individuals are randomly selected from the population and the fitness
values compared The fitter individuals must fill an intermediate population pool before

crossover is executed



Optimising road project sequence~ by genetic algorithm

crossl

cross2

1 5 7 4 1 6 7

5 6 3 4 2 2 3

The mapping for this exchange is 3<:-'77, 4<:-'74 and 2<:-'71 The duplications outside the
interchanged segments are repaired by using this mapping again. The below shows the
resulting individuals, with the numbers in italics representing the elements which were
repaired

child1

child2

2 5 7 4 1 6 3

5 6 3 4 2 1 7

For problems such as project scheduling or the travelling salesman problem, the order in
which a number appears in a string is important Hence, to supplement crossover, there is the
mutation operator and the inversion operator, which reorders the elements within a string"

In mutation, two random positions in a string are chosen and the values within exchanged
For example, AAABDEC becomes AAACDEB for mutation ofelements B and C

Inversion, as its name suggests, is a process which inverts the ordering of a segment of the
chosen string That is, AABCDA becomes AADCBA if segment BCD is inverted

These operators usually occur with a small probability, as the main recombination of fit
individuals occur with selection and crossover. Too high a probability may result in slow
convergence of the algorithm

For details on the exact procedure for running the GA, the reader is referred to Appendix A,
algorithm A3

Experimental Results

The GA as described above was implemented on the Northwest corridor of the Perth,
Western Australia metropolitan region.lhis region consists of a total of 2335 links and 782
nodes. The morning peak, with 11928 OD pairs, is selected as the period of analysis. As a
test, the 26 components of three broad projects (1able 1) were chosen to be considered over
a planning period of five years, with impacts also being analysed over the next ten years in
five year intervals The costs are discounted at a rate of4%
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Plot of fitness of the best individual in a generation

Description of Br'oad Road Projects

Figure 1

The chart below shows the progression of the best individual across generations It can be
seen that the best individual does not change appreciably from generation 34 onwards 'This
flattening indicates that the GA has reached a steady state and improvements hereafter are

negligible

For a population size of 200, 50 iterations were performed, with the time taken per iteration
being approximately 2 hours, The burden of computations lie in the uaffic assignments, as
each iteration consist of (5+2)*200 traffic assignments • one for each year and each
individuaL However care has been taken to optimise the Frank-Wolfe traffic assignment
algorithm used, so that each assignment takes approximately 5 seconds on a Sun Ultra 1

workstation

The above projects are encoded into road link fonn and the resulting number of links to be
selected and scheduled totals 26 Hence in the GA, a chromosome of length 26 is required
For this length of string. the solution space is still large. consisting of 261 = 40329E+26
possibilities, The cumulative budget over the 5 years is set so that it covers approximately
75% of the total cost of all 26 projects lhis means that some projects will not get
implemented, However, the projects that are not considered still remain in the lower end of

the slling so that useful information is retained

1 Mitchell Freeway widening

2 Wanneroo Road widening, This road starts and ends further north than 1 above,

3 Mannion Road widening, lhis road is to the west of the Wanneroo Road project, but
does not stretch as far north as 2

Table 1
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The timetable for the fittest individual at the last generation is given in Appendix B, timetable
1. It can be seen that the north-bound widening projects on Wanneroo Road are very
important, as are the north-bound widening projects on Mitchell Freeway. Projects 1-4 are
selected for scheduling even though the ramps are constructed without the freeway links,
Timetable 2 in Appendix B does not select projects 1-4 but has almost exactly the same
payoff The effect of not implementing projects 2, 3 and 4 in timetable 2 is that about half of
project 8 gets implemented, and this makes no difference in the benefits,

Timetable 3 in Appendix B shows an alternative timetable which is different from timetable 1
but has a very similar payoff (the fitness value is less than 1% lower), There is similarity in
the order of scheduling projects 5-26, with a tendency for the cheaper projects in the southern
direction to be favoured" The big difference is that the new sections of Mitchell Freeway is
constructed by year 4 This altemative may be more attractive from a policy perspective, as a
new section of freeway is a highly visible form of investment

Discussion and extensions

A practical feature is that at the end of the iterations, we have not just one solution but a set of
fairly good solutions to pick from Hence, should political priorities change, it is possible to
select an individual in the population which is not optimal, but close to optimal, and has
projects with the desired policy effects, Furthermore, the model is flexible and incorporates
many of the vertical and horizontal interdependencies which is a feature of urban traffic
network project analysis,

A possible criticism of this model is that only travel time is used as a criterion for
optimisation" There are many other criteria which are not considered, for example, land use
or environmental impacts" However, these can readily be taken into account by GA (Qiu,
1995) Vehicle operating cost calculations are based on time savings, and are included in the
modeL The model is also capable of analysing different time periods within the day, for
example, the AM peak, the PM peak and the off-peak, However, there is the computational
burden of a tr'affic assignment for every distinct period

Directions for further research arise from the difficulty that in this representation the full set of
potential projects may not be known beforehand. Ideally, the entire set ofIinks in the network
and the potential projects on them would be under consideration This would result in an
extremely long string, consuming vast amounts of memory. However, the bUdget constraint
imposes a natural limit on the length of a string, For example, an individual will consist of a
set of randomly chosen projects that exhaust the combined budget over the project planning
period If the same genetic operators were applied to this representation, once the initial
random population has been set, we are essentially constr'aining ourselves to a subset of the
network, as it is not possible that every single link has been selected into the population
Therefore, the genetic oper'ators such as mutation and crossover would have to be modified to
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encompass the search space.. Further research will consider this issue and whether the model
may be extended to include other modes
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Appendix A Algorithms

Optimising roadproject sequences by genetic algorithm

Translating an individual into a construction schedule or
timetable..

Evaluating the fitness of a chromosome

A GA for the dynamic project scheduling problem for'
optimising a transport network

Algorithm Al

Algorithm A2

1 Let the year be y =L Let the project Pi be the ith element in the individuaL Set i :::: L Let
the budget be b(y), the cost of a project, c(pJ

2, If b(y) ~ e(p,) then complete prqjectPi and ser b(y) == b(y) _ c(p,) Go to 3
Else go to 4,

3" Let i :::: i + I and return to 2, Stop if i reaches the number of projects,

4, Set y :::: y + I and return to 2, Stop ify reaches the end of the planning period

I" Find the construction schedule of the chromosome Let the total cost be denoted by t
e
=0

Set y =1

2" Implement the projects for year' y in the network Run the traffic assignment for year y in
the improved network. Using the flows, calculate the discounted costs, c~, Set t

e

:::: t
e

+ Cv

3 Let y=y +I, Ify reaches the end of the planning period then go to 4, else go to 2,

Run the traffic assignment for yeary, Using the flows, calculate the discounted costs, cv'
Set te :: t, + C,

4, Let y==y +1" If y reaches the end of the evaluation period then go to 6, else go to 4

5., Set the fitness value to the total base cost minus the total cost.

Algorithm A3

I" Set iterations i :: I, year' y =I

2. Initialize a random population of strings,

3, For every member of the popUlation, evaluate its fitness function as described,

4, Perfonn selection, crossover, mutation and inversion as described.

5. Set i :: i +L If i leaches the maximum number of iterations, then stop. Else, go to 3,
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Best pI~ject timetable determined by GA at iteration 50

nl new link
r ramp
w widening

Timetable 1
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prj prj Dirn cost in year

No. Type millions 0 1 2 3 4

1 n! N 86.93

M 2 ¥. N 0 .. 38 1

I 3 nJ.. S 86.93 0.25

T 4 r S 0.38 1

C 5 '>J N 0 .. 33 0 .. 64 0 .. 36

H 6 .~] N 2 ,,11 1

E '7 w N 0 05 1

L 8 w S 0 08

L 9 w S 2.20 1

10 w S 0.31 0.11 0.89

11 w N 5 .. 69 1

W 12 w N 0 .. 11 1

A 13 w N L47 1

N 14 w N 1 .. 34 O. 75 025

N 15 'tJ N 0 .. 25 1

E 16 w N 1 .79 1

R 1'7 w N O. 50 1

0 18 '_I N O. 29 0 36 064

0 19 "N S 5 69

20 w S O. 11

R 21 ~..; S 1 .47 1

0 22 ;'j S 1 .34

A 23 'ih S 0.25 1

D 24 'W S 1 .. 79 1

25 ";'] S 0.50

26 ~ S 0.29 ~



Timetable 2
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Alternative pr~ject timetable with almost exactly the same
fitness value as Timetable 1

Prj Prj lDirn cost in year
No. trype millions 0 1 2 3 4

1 nl N 86 93
M 2 r N 0 38
I 3 nl S 8693
T 4 r S 0.38
c 5 w N 0 .. 33 0.7 0 .. 3
H 6 Vf N 2 .. 11 1
E 7 w N 0.05 1
L 8 w S 0.08

0 56L 9 w S 2.20 1
10 w S 0.31 0.22 0.78
11 w N 5.69 1

w 12 w N 0.11 1
A 13 w N 1.47 1
N 14 w N 1 34 O. 75 0.25
N 15 w N 025 1
E 16 w N 1 79 1
R 1'7 w N 0 50 1
0 18 w N o 29 0,48 0 520 19 w S 5. 69

20 w S 0 .. 11
R 21 w S 1. 47 1
0 22 w S 1 .34
A 23 w S 0 25 1
D 24 w S 1 79 1

25 w S 0.50
26 w S 0.29 1

Key for pr~ject types

nl new link
r ramp
w widening
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Second best project timetable determined by the GAl with
objective function less than 1% below the best

nl new link
r ramp
w widening

Timetable 3

Salim

sub Prj Ioirn cost in year

no. Type millions 0 1 2 3 4

3 nl N 86,93 1

M 18 r N 0,,38 1

I 4 nl S 86 93 1

T 5 r S 0.38 1

C 30 w N 0 ,,33 0,38 0 62

H 31 w N 2, 11 1

E 32 w N 0 ,,05 1

L 2'7 w S o 08 1

L 28 w S 2,20 1

29 w S 0.31

38 w N 569 087 0 13

W 40 w N 0 11 1

A 42 w N 1 47 1

N 44 w N 1 34 1

N 46 w N o 25 1

E 48 w N 1 79 1

R 50 w N 0,50 1

0 52 w N 0,29 0,,29 0, 71

0 3'7 w S 5 69 1

39 -,.., S 0,11

R 41 w S 1,,47 1

0 43 w S L34 0,,21

A 45 w S 0,25 1

D 4'7 ;.; S 1 79 1

49 It S 0 50

51 :.h" S 0.29 0.68 0.32
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