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Abstract

The paper provides a theoretical framework for analysing the effects of public
infrastructure provision on private sector productivity using the example of a
transport network. Public infrastructure such as a transport network is assumed
to be a (congested) public good. When the provision of this good is at the long
run equilibrium level, consumers pay a price which reflects the (individually-
determined) marginal productivity of the good and the supplier is also
recovering all its opportunity costs. In the traditional literature on transport
congestion (Walters, 1961; Mohring and Harwitz, 1962), the concept of
infrastructure capacity is often defined in term of the maximum level of traffic
flow, which is more of a usage concept rather than a ‘capacity’ concept.
Congestion is then defined in terms of an increase in the marginal social cost
of this traffic flow over and above the marginal private costs (measured in terms
of the average travel time per trip distance). Defined in this way, optimal
congestion tax is seen to be limited just to the case when travel demand and
traffic density is still at a relatively low level where ‘bottleneck’ congestion has
not occurred. This paper explores an alternative definition of infrastructure
‘capacity’ and ‘congestion’ level where it is related more to the level of traffic
density and travel speed, rather than to traffic flow. Defining capacity and
congestion in this way, the paper opens the way for redefining the concept of
an optimal ‘congestion tax’ or traffic toll which can be used to apply to the case
of heavily congested or bottleneck situation as well as to the traditional case of
‘low congestion’. The paper illustrates this new concept of congestion toll with
an empirical estimation to an actual road network.
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Introduction

The role that public infrastructure investment can play in increasing private
sector productivity is a burgeoning area of research. Although there have been
many studies which look at this issue (See Aschauer (1988, 1989a, 1989b),
Berndt and Hansson (1981), Nadiri and Mamuneas (1991), Alesina et al.
(1991), Dixon and McDonald (1991)), these studies often do not take into
account the public (or semi-public) nature of infrastructure goods.

One of the difficulties encountered in analysing the effects of a public good
investment on private sector productivity is that to determine the optimal level of
provision of a public good, it is essential that we equate, not the individual, but
the sum, of all these individualised marginal willingness-to-pay for (marginal
productivities of) the good, with its marginal opportunity cost. The information
on this is not readily observable due to the problem of preference non-
revelation.

Fortunately, in the case of a ‘congested’ public good, such as a transport
network, congestion can act as though a kind of ‘implicit tax’ which individual
users of the public infrastructure have to incur and hence, at equilibrium these
implicit congestion taxes can act as ‘Lindahl prices’ which will entice the
individual users of the congested good to reveal their true preferences about
their marginal willingness-to-pay for the public good. If we can estimate the
level of the implicit taxes from the level of congestion and the aggregate level of
demand associated with this level of congestion, then we can use these to
estimate the (aggregated) Lindahl prices to determine the optimal level of
provision of the public good. Congestion, in other words, can act as a kind of
‘invisible hand’ which helps to restore equilibrium in the case of a public good.
We illustrate this with an empirical calculation for an actual road network.

Public Infrastructure as a Congested Public Good

Let G be the stock or capacity of a public infrastructure asset available for use
and Gi be the ‘effective’ level of utilisation of this capacity by user i. If G is a
pure public good, then by definition:

niGGi ,...,1, == (1)

where n is the total number of users (that is, every user has unimpeded equal
access). On the other hand, if G is a pure private good, then we have instead:

.
1

GG
n

i
i =∑

=

(2)



Congestion charging and the optimal provision of public infrastructure:
theory and evidence

In the general case when G is an impure (partially congested) public good, we
have:
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As Oakland (1987) pointed out, congested public goods can be treated as
though equivalent to a combination of congestion externalities and a pure
public good which relates to total system capacity. Thus, if f i(.) stands for the
production function of user i, then we have:

),,...,,,( 1 GGGKLff nii
ii = (4)

where Li and Ki stand for the private (labour, capital)1 inputs, Gj is the effective
level of utilisation of public infrastructure by user j, and G is the total system
capacity (eg lane kilometres). We have:
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which says that j ' s  utilisation of the system capacity would contribute to
congestion and therefore would impact negatively on user i ' s  marginal
productivity. An alternative specification for a congested public good is to
assume that each effective utilisation of the good is given by the user's own
utilisation rate and an overall level of congestion θ:
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We refer to equation (7) as the congestion function. Pareto optimal allocation
of resources in the case of a congested public good can now be found by
solving the following optimisation problem:
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 These inputs would include a driver’s time and the capital cost of a car for a road use context.
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where X j  is the output or activity level associated with user j, and F(.) is the

transformation function between total private capital investment (∑
=

n
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total public capital goods production.

The Lagrangian for this optimisation problem is:
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with λi = −1 and Xi = 0 for the reference i. The efficiency conditions with respect
to Gi are as follows (assuming that Gi < G, and therefore αi = 0 for all i).
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Equations (10) and (11) can be combined to give:
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and equations (10) and (12) can be combined to give:
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Equations (14) and (15) can also be combined to give:
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If increasing the aggregate utilisation rate and capacity by the same proportion
would leave congestion unchanged (i.e. the function θ(.) is homogeneous of
degree zero in its arguments), then we have:
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Multiplying (16) by Gi and summing over all i’s using (17), we have:
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where PG = (FG/FP) is the shadow price of public capital in terms of private
capital foregone.

Equation (18) is a special case of the Samuelson condition for the optimal
provision of a congested public good2. The ratio )/( i

K
i

G ii
ff  stands for the

marginal productivity of a public capital good relative to that of a private capital
good for user i. If we adopt the benefit principle of taxation then each individual
user should be charged an individualised (or Lindahl) price for the effective
utilisation of public infrastructure as follows:
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where i
GP  is the per unit price for public infrastructure capacity G and where

i
GT  is the total contribution from user i towards the total public infrastructure

capacity costs3. Using (16), we have:
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Application to a Transport Network

To operationalise the model, we need an empirical specification of the
congestion function (7). One specification of this function is the form used in
many public infrastructure studies such as the one proposed by Shah (1992):

                                                            
2
 See Oakland (1987, p. 501).

3
 In practice when a price is charged for the use of a public infrastructure, this would consist of

both a 'usage' component to cover the short run operating and maintenance costs and a
'capacity' (or capital) component to cover the rental price of infrastructure capital. Here we are
concerned only with the capacity component.
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θ).( ii IGG = (21)

Here, I i stands for an ‘index of use’ (of the road capacity) by user i, and θ is a
‘parameter indicating the degree of publicness of public infrastructure’4. In the
case of a road network, θ can be used to indicate the ‘degree of congestion’ on
the road5. Capacity utilisation level Gi can be indicated by the speed of user i’s
vehicle. Thus, if there is no congestion (θ = 0), every vehicle can travel at the
maximum speed G allowed by the capacity6 of the road. When there is some
congestion on the road (θ  > 0), then speed will depend on the index of use as
well as the degree of congestion. For example, if there are n users of the road
(n can be related to the traffic volume, or density, on a particular road segment)
and assuming that the index of use is the same for all vehicles, then we can
construct an index of use I i = (1/n) for all i’s. In this case, the (relative) index of
capacity utilisation for each vehicle (user) will be Gi/G = (1/n)θ which implies
(G/n) < Gi < G for (0 < θ < 1). The situation when θ = 1 and Gi = (G/n) can be
described as ‘full’ or ‘complete’ congestion. In this limiting situation, any
percentage increase (or decrease) in the traffic density will be matched exactly
by the same percentage decrease (or increase) in the average speed of all
remaining vehicles, and this can be explained as follows. When congestion is
‘full’, road space is considered as though a pure private good, and is
completely ‘rival’. This means one vehicle’s ‘consumption’ of road space must
be at the full expense of another vehicle’s, and this follows from the condition
that the total level of consumption of road space by all vehicles must remain a
constant. Since ‘speed’ is the rate of consumption of road space per unit of
time, we have the product of average speed and the number of vehicles equal
to the total level of consumption of road space per unit of time. Since the latter
is a constant, any percentage increase/decrease in the number of vehicles
must be matched exactly by the same percentage decrease/increase in the
average speed.

There are advantages in defining capacity (and capacity utilisation) of the road
in terms of speed rather than in terms of traffic ‘flow’ 7 (vehicles per lane per
hour), or in terms of traffic ‘density’ (vehicles per lane per km). If we use an

                                                            
4
 Shah (1992, p. 29).

5
 Shah referred to θ as the degree of ‘publicness’ of the infrastructure good, but in fact, it can

be seen that the greater the value of θ, the smaller would be the value of Gi. Hence, it would be
more appropriate to refer to θ as the degree of non-publicness (or ‘rivalness’ in consumption) of
the public infrastructure good, and in the case of a road network, the degree of ‘rivalness in
consumption’ is in fact the degree of ‘congestion’ in the network.
6
 In practice, the maximum speed G is determined not only by the physical capacity of the road,

but also by traffic regulation and safety standards.
7
 In the literature on congestion modelling, there has been a heated debate about whether it

makes sense to define supply and demand for travel in terms of traffic flow. One difficulty is the
fact that a single level of traffic flow can correspond to two different levels of traffic congestion
(i.e. there is a backward-bending supply curve for traffic flow – Lindsey and Verhoef, (2000)).
Traffic flow, therefore, is not an unambiguous measure of traffic congestion. Speed, on the
other hand is related uniquely to congestion, and hence can be used as an indicator of capacity
utilisation level (which is also a measure of congestion).
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analogy with electricity generation, ‘capacity’ in electricity generation is defined
as the rate of electricity supplied per unit of time (kW), while ‘usage’ is defined
as the total quantity of electricity consumed over a period of time. Usage is
thus equal to ‘capacity * time period’ (kWh). Similarly, for a road network,
capacity can be defined in terms of the maximum rate of ‘supply’ of road space
per unit of time to each vehicle (speed), while road usage can be defined as
the amount of road space ‘consumed’ by each vehicle over a period of time, i.e.
usage (distance travelled by a particular vehicle) = capacity (speed) * time
period.

There is also an alternative way of looking at equation (21). Instead of looking
at speed (which represents capacity), we can now look at its inverse, which is
the average travel time on the road, as follows:

θ).(0 ntti = (22)

Here, ti = (1/Gi) is the average or ‘effective’ travel time (per kilometre) on the
road when there is congestion (at level θ and with n users), and t0 = (1/G) is the
free-flow or zero-congestion travel time. From equation (22), we can derive:
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where dln(x) is used to denote the change in the logarithm of variable x, or the
percentage change in variable x, where x = {ti, n}, and ( t

ne ) is therefore the
elasticity of travel time with respect to an increase in the number of users.
Equation (23) says that this elasticity is given exactly by the congestion
measure. This gives us another useful interpretation of the congestion measure
θ.

Equation (21) can now be used to define (or ‘calibrate’) the level of congestion
θ in terms of the relative rate of capacity utilisation (Gi/G)8 and the index of use
(1/n). To illustrate this, consider a hypothetical (maximum) speed-versus-traffic
density relationship as shown in Figure 19. From this speed-density diagram,
                                                            
8
 Or (t0/ti).

9
 See, for example, Lindsey and Verhoef (2000) figure 1, page 355. Note that we are

considering only the maximum achievable speed for any given traffic density because in
reality, the actual speed can be influenced by many factors (bad weather, accidents, vehicle
breakdowns, driver’s behaviour, etc.) rather than just the ‘normal’ congestion factor (i.e. traffic
density). Therefore, to isolate this particular relationship between speed and traffic density
which reflects congestion, we must use the maximum achievable speed to filter out these other
factors (see the section on “Empirical Application to an Actual Road Network’ below). The
'speed-density' diagram which we use is not simply a characterisation of 'demand', but rather a
picture of how demand (traffic density level) and supply (network capacity) interact. For
example, if we keep the supply curve (capacity of the road network) fixed and allow the traffic
demand (traffic density level) to increase, then the equilibrium ‘price’ of the traffic flow will also
increase, and this is reflected in the increased level of congestion. This will then act to
decrease the level of "effective” capacity utilisation even if the actual level of capacity remains
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choose the ‘reference’ density level n0 such that at that density, we regard
congestion as still being zero. In reality, the definition of n0 is conditional on the
definition of the maximum free-flow speed G0, and since the latter is
dependent, not only on the physical capacity of the road, but also on traffic
regulations, on drivers' behaviour, etc., the determination of G0 and n0,
therefore, cannot be left entirely dependent on the physical capacity of the
road. To determine the level of G0, thus, we need to consider, not only the
existing legal speed limit on a particular road, but also the existing physical
characteristics. Once the level of G0 is determined, however, we can use this to
define n0: it is the level of traffic density such that, above this level, the
maximum achievable speed cannot be greater than G0. Below this traffic
density level n0, of course, there may be observed achievable speeds which are
greater than n0 (e.g. drivers exceeding the speed limit, and/or driving at an
unsafe speed). However, for the purpose of defining ‘congestion’, we will
ignore these ‘outliers’. The congestion level for traffic density less than or equal
to n0, thus, will by definition be zero. Congestion will start to increase from zero
to a positive value when traffic density n exceeds n0 because the maximum
achievable speed will start to decline below G0 (see Figure 1). We can now
also re-write equations (21) and (22) in an alternative (‘indexed’, or 'relative'
form) as follows:

θ)/.( 00 nnGGi = (24)

θ)/.( 00 nntti = (25)

where n0 is the maximum ‘free-flow density’ of the road and can also be used
as an alternative definition of the 'capacity' of the road10.

From equation (25), we can also rewrite equation (23) in an alternative form as
follows:
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Equation (26) says that keeping 'capacity' G constant (as is implied by equation
(23) will require that both G0 and n0 must remain constant. In some cases, G0

can change without any change in the physical capacity of the road (e.g. a
change in the legal speed limit without any change in the physical conditions of

                                                                                                                                                                                  
the same. Traffic density therefore is used to represent, not a demand for 'traffic' or trips as
such, but rather a demand for system capacity. This represents a departure from conventional
approach where the focus is on 'traffic' or 'trips' rather than on capacity of the road.
10

 n0 is to be 'calibrated' from observed data. Comparing equation (25) with an alternative
formulation of the (congested) travel time function, such as that used by the Bureau of Public
Roads: t = t0 [1+0.15(Q/C)4], where Q is the traffic volume (vehicles/hour), and C is ‘capacity’
(also vehicles/hour travelling between two nodes of a link) (see, Ozbay et al. (2001), p. 81), we
note that the ratio (Q/C) plays a role similar to that of the ratio (n/n0) in equation (25).
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the road). In which case, n0 will need to be re-calibrated be consistent with the
new definition of G0. In other cases, it is quite possible that the legal speed limit
G0 will remain the same, despite an improvement in the physical capacity of the
road. In this case, the speed-density curve will have shifted to the right and this
implies a new level of n0. The new level (n*0, as shown in Figure 2) can now be
regarded as the new (and improved) capacity of the road. If, on the other hand,
we want to keep the definition of n0 constant, then the change in physical
capacity of the road must be reflected as a change in the free-flow speed (from
G0 to G*0.as shown in Figure 2). In practice, of course, we can also represent
the change in the physical condition of the road as both a change in G0 as well
as a change in n0.

Figure 1.  Speed versus density for a hypothetical road segment

Figure 2. Effect of an increase in the physical capacity of the road

traffic density (n)
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If we substitute I i = (1/n) for all i’s into equation (21), summing over all i’s,
taking the logarithm of both sides and then re-arranging terms, we can re-write
equation (21) in an alternative form which shows the congestion level as a
function of total capacity and total capacity utilisation as follows:
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Substituting this into (20), we obtain:
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Equation (30) shows the rate of ‘trade-off’ between an increase/decrease in the
total level of capacity utilisation by all users and the system capacity (G) to
keep the level of congestion constant. This represents the ‘shadow price’ or
opportunity cost of (total) private capacity utilisation in terms of the public good
(system capacity) forgone. When congestion is ‘full’ (i.e. θ = 1 and capacity
becomes a pure private good) the rate of trade off is one-for-one, and the
opportunity cost of (private) capacity utilisation is equal to 100% of the shadow
price of system capacity, i.e i

GP =PG as is expected. When the congestion level
is zero, however, and system capacity is a pure public good, all users can
share the system capacity without diminishing the level of utilisation of one
another, and the opportunity cost of system capacity to each user is equal to
(1/n)PG. In general, when 0<θ <1, the opportunity cost of Gi should be
somewhere between these two extreme cases and is given by equation (30).
This can also be illustrated as in Figure 3.



Congestion charging and the optimal provision of public infrastructure:
theory and evidence

Figure 3. Capacity Utilisation Level and Capacity Shadow Price

In Figure 3, we assume that the long run marginal cost (LRMC) of system
capacity is a constant11 at PG. The long run supply curve for capacity is then a
horizontal straight line at LRMC  = PG. Assume also that there are n users of
the road in the long run. From the equation for i

GP  (which shows the individual
marginal willingness-to-pay for effective capacity utilisation by a ‘typical’12user
i), we can ‘scale this up’ to get a (pseudo) demand curve for capacity by all
indexed users of (n i

GP ) = GPn θ)( . Given these demand and supply conditions,
equilibrium is then established in the long run when capacity is settled at G and
congestion level is settled at θ*=013. Each user then pays a total capacity
charge of i

GT =(1/n)(GPG) and the supplier recovers fully the total capacity cost of
(GPG). This is the long run equilibrium situation. From this analysis, it can be
seen that the total level of contribution by each user i to system capacity costs,

i
GT  (the shaded area in Figure 3)14, is independent of the level of congestion and

                                                            
11

 This is not essential, but made for simplicity.
12

 If users are different in their marginal willingness-to-pay for capacity, then we use the
marginal willingness-to-pay for capacity of the marginal user (assuming uniform pricing for all
users).
13

 This assumption is made here for simplicity and can be relaxed. For example, if we assume
that θ*> 0 in the long run, then long run capacity will settle at a level G* < G.
14

 Which strictly relates to Gi and not G but as a hyperbola curve, the two rectangles positioned
at “a” and at “b” are equal
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therefore, the total contribution by all users to system capacity costs is also
independent of the level of congestion, (area OCBGi = area OPGAG in Figure 3)
if the equilibrium condition (30) is to be followed. This implies that at
equilibrium the supplier can always recover fully the total system capacity
costs, and each individual (marginal) user is also paying exactly for the total
effective level of capacity utilisation (rather than the actual supplied level). That
is, i

GT  (the shaded are in Figure 3) corresponds exactly to the total willingness
to pay by each (marginal) user for capacity up to the effective level of capacity,
Gi, rather than the total supplied level G. This makes sense because, in reality,
the level of Gi is unknown to the supplier, and therefore, capacity is often
charged by the fixed total amount i

GT  rather than by the ‘per unit’ shadow price
i

GP . Given that each user is going to be charged this fixed total amount (the toll
charge) irrespective of the level of congestion, each will consider matching this
total charge with the total willingness-to-pay for effective capacity. Those users
who can will remain on the road, while those who cannot will try to switch to
non-tolled routes (or change travel mode, etc.). This means, at equilibrium, the
total willingness-to-pay for effective capacity of the marginal user will be just
equal to the total charge, and the supplier’s total revenue is also equal exactly
to the total capacity costs (area OCBGi). This is the equilibrium condition
implied by equation (30). In the next section, we will examine situations in the
short run where deviations from this long run equilibrium may occur.

Short Run Effective Utilisation of a Congested Public Good

Up to now we have implicitly assumed that traffic demand level (n) and
especially capacity supply (G) are at their ‘long run equilibrium’ level (this is
implied by equation (18) from which equation (30) was derived). We now
consider the situation when their short run levels may deviate from these long
run equilibrium levels. This will enable us to establish the short run effective
capacity utilisation charge that is consistent with the revenue that has to be
raised from users to recover the short run full cost of infrastructure (including
maintenance) and perhaps also to raise revenue for long term investment in
capacity (the latter being the Fully Allocated Cost Method). This is commonly
the case with toll roads that are part of a transport network and which are
unlikely to be at their optimal level (as determined by the shadow price of
capital throughout the economy) in the short run.

In the ‘short run’, assume that total private capital 






 ∑
=

n

i
iK

1

 and public

infrastructure capacity G are fixed at levels which may be different from their
long run equilibrium values. Furthermore, we can also assume that although
collectively all users can influence the level of congestion θ (see equation (7)),
individually, the effect of a single user's action on θ can be considered to be
negligible. This means the values of θ, θ1 and θ2 can also be considered as
‘given’ from an individual user's point of view.
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Consider the long run equilibrium situation as described in Figure 3 of the last
section again. Assume now that there are two different types of short run
disequilibrium situations:

(i) Short run actual capacity G is less than long run equilibrium level G, but
indexed traffic density level remains at n.

(ii) Short run traffic density level is now at m > n, but road capacity remains
at G.

In the first situation (Figure 4), congestion will have to increase, from the ‘long
run equilibrium’ level at point a (assumed to be θ* = 0) to a short run
equilibrium level of θ>θ* at point b. At point b, congestion acts as a kind of
‘invisible tax’ on the user to increase the marginal cost of capacity utilisation
from (nθ* − 1PG)  to (nθ? − 1PG), and reduce the level of capacity utilisation from (G)
to (G ). The total (implicit) congestion tax paid by each user is then given by: (nθ

− 1 − nθ*−1)G PG (the bottom shaded area in Figure 4). If the supplier now also
acts as though collecting this implicit tax (by levying a capacity charge based
on the long run equilibrium level of capacity (G) even though now, the short run
effective level of utilisation by each user is only G ), then the supplier will
accumulate a revenue surplus of   (nθ  − nθ*)G PG (the top shaded area CBHPG in
Figure 4)15. Note that, this surplus is exactly equal to the difference between the
actual capacity charges levied on all users of (nθ G PG) and the actual capacity
costs of nθ* G PG = G PG. This surplus, therefore, can be used to expand
capacity, say from (G ) to (G) if congestion is to be reduced from θ to θ* in the
long run (assuming that traffic density level is to remain at n).

                                                            
15

 Levying a capacity charge based on long run level of capacity G rather than the short run
level implies an individual capacity charge of n?θ* - 1GPG. From equation (30), this is also equal to
n?θ - 1 G PG.
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Figure 4. Short Run Capacity Supply constraint
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level of θ* = 0 at point a to a short run equilibrium level at point b where θ>θ*.
Again, we see that short run congestion acts as a kind of ‘invisible tax’ on each
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and thereby reduces the level of capacity utilisation from G to Gi = G(n)-θ. The
total implicit ‘congestion tax’ paid by each user in this case is thus equal to:
(nθ − 1 – nθ* − 1)(GiPG) (the left-bottom shaded area in Figure 5). This is the same
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than at Gi, and therefore, actual capacity cost is GPG rather than GiPG. If the
supplier collects this (implicit) congestion tax from n users only, then this is
just sufficient to pay for the actual ‘extra’ capacity supplied (G – Gi) even
though this is not effectively utilised by the users due to congestion (the right-
bottom shaded area in Figure 5). However, since there are m > n users, the
extra amount of implicit congestion taxes collected from these extra number of
users, i.e. (m – n) [(nθ  − 1 – nθ* − 1)(GiPG)] (the top shaded area in Figure 5) will
represent the amount of revenue surplus collected by the supplier over and
above the actual capacity costs. Again, this surplus can be used to expand
capacity beyond G, say to G*, if demand is assumed to remain at m in the long
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run. However, if the increased traffic density level is assumed to be only a
short run phenomenon, then the extra revenue collected from these additional
traffic can be seen as a short run ‘congestion tax’ device to ‘ration’ demand
back to the long run equilibrium level n.

In reality, there can be a mixture of cases (i) and (ii), and therefore, the implicit
or invisible ‘congestion taxes’ levied on the road users when congestion occurs
can act both as a short run price rationing device, and/or a long term means for
raising revenue to expand capacity.

Figure 5. Short run disequilibrium traffic demand
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Empirical Application to an Actual Road Network

The first task in empirically identifying appropriate short run user charges is to
determine the level of congestion. We have collected a sample of 3,730 road
segments (or links) of various types in the Sydney Metropolitan Area for 200116.
For each link, we obtained information on the link type (arterial, highway,
expressway, freeway, etc.), link length (kms), number of lanes, vehicle density
(vehicles per lane per km), travel time and speed, for different time periods of
day (AM, Mid-day, PM) and night time (Nite). We have selected freeway
conditions only since they relate most appropriately to tollroad settings, the
focus of this paper. From this data we first plot the information on vehicle
speed versus vehicle density for various times of day. This is shown in Figure
6. From this speed-density scatter diagram, we observe that there is a definite
(negative) relationship between the maximum speed achievable at any level of
traffic density and the actual traffic density as hypothesised earlier in Figure 1.
Such a relationship, however, will start only when the traffic density level
reaches a certain ‘minimum’ level (called n0 in Figure 1). In practice, we can let
this level n0 to be determined econometrically by regressing the values of
ln(G0/Gn) against the values of ln(n) and find the value of ln(n0) when ln(G0/Gn)
reaches the value of zero (for any assumed value of G0). If the level of G0 is
chosen too high, then there will not be a sufficient number of observations on
the values of ln(G0/Gn) which are close to zero to estimate the value of ln(n0)
accurately. Therefore, in practice, we will first choose a level of G0 which is
sufficiently low (say, 80 km/h) to allow for a sufficient number of observations
of ln(G0/Gn) which are close to zero. Then, having estimated the relationship
between ln(G0/Gn) and ln(n) based on the assumed value of G0 which may be
lower than the actual speed limit on the road (say G*), we can now take into
account this fact by adding to the estimated value of ln(G0/Gn) a constant term
ln(G*/G0). This is because17 ln(G*/Gn). = ln(G*/G0). + ln(G0/Gn). Note, however,
that this will also involve a re-estimation of the value of ln(n0) since the newly
estimated function ln(G*/G0) will cut the horizontal axis at a different value of
ln(n0). This is illustrated in Figure 7. Here, the estimated value of ln(n0) is 2.59
for G0 = 80 km/h, but changes to 0.5 for G0 = 105 km/h. Note that without using
this indirect method, it may not be possible to estimate the value for ln(n0) for G0

= 105 km/h because there will be no actual observations of ln(G*/Gn) which are
close to zero when G0 is set to 105 km/h.

In Figure 8, we plot the empirically estimated relationship between ln(G0/Gn)
and ln(n0) (using equation (24)) and compare this with the Bureau of Public
Roads (BPR) formula: ln(G0/Gn) = ln(tn/t0) = [1+0.15(n/n0)α], where α ?is given the
values of α =1 and α = 4. It can be seen that when α =1, the BPR formula
                                                            
16

 Data was purchased from the Transport Data Centre (within the New South Wales
Department of Transport).
17

 In practice, if there are sufficient number of observations of ln(G*/Gn) close to zero (i.e.
sufficient number of Gn close to G*), then we may simply choose G0 as being equal to G* so that
there will not need to be any adjustment to the estimated value of ln(G0/Gn).
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comes close to the observed values and our predicted values. However, when
α  = 4 (the value of α  ?in the original BPR formula), the BPR formula gives
values which are significantly different from both the observed values and our
predicted values. This illustrates the advantage of using an equation such as
(24) where the flexible ‘congestion’ parameter α?can be used to fit in with a
particular type of road and traffic condition, whereas the BPR formula cannot.

From the empirically estimated relationship between ln(G0/Gn) and ln(n) (as
shown in Figure 7), we can now estimate the values of θ for different levels of
traffic density n using the formula θ = [ln(G0/Gn)]/[ln(n/n0)], and assuming a
particular level for G0. This is plotted in Figure 9, and from there we can see
that, except for the random variation in the estimated values of θ for low traffic
densities (due perhaps to the lack of accurate empirical observations on the
values of Gn for low values of n), the relationship between θ and the traffic
density level n is quite stable when n gets large (and this is also where the
main interest in congestion measurement lies). Note also that the higher the
assumed level of G0 for any given set of observed speed Gn, the higher will be
the estimated congestion level. In other words, ‘congestion’ is a relative
concept. Its definition and measurement depends on the (arbitrary) setting of
the ‘zero congestion’ (or maximum free speed) reference level.

Figure 6: Speed versus Traffic Density on Freeway
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Figure 7: Estimated relationship between (the minimum value of)
ln(G0/Gn) and ln(n) for different assumed values of G0.

Figure 8: Comparing the predicted relationship with that implied by the
Bureau of Public Road (BPR) formula (assuming G0 is equal to
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80 km/h).

Figure 9: Congestion Level versus Traffic Density on Freeway
for different assumed levels of free-flow speed G0.

Implicit or Invisible Congestion Taxes

If equation (30) is used to devise a system of capacity charges or tolls for road
usage, then in the long run, not only are the users paying exactly for the total
amount of capacity they can effectively make use of, but the supplier is also
recovering all capacity costs (GPG), given any assumed ‘long run equilibrium’
level of congestion θ*. Suppose, however, that in the short run, the actual
congestion level is different from θ*, say θ > θ*, then the user is implicitly
paying more for capacity (because the effective level of capacity utilisation has
been reduced below the long run equilibrium level). Congestion, thus, acts like
an implicit or ‘invisible tax’ on the user, and the supplier, if allowed to collect all
these implicit taxes, will be running an ‘invisible’ surplus. The estimation of this
surplus depends on the assumption one makes about the state of short run
disequilibrium situation (as explained by cases (i) and (ii) of Figures 4 and 5).

If the short run disequilibrium situation is due to a shortfall of actual capacity
relative to (long run) traffic demand estimation (case (i) of Figure 4), then the
‘surplus’ can be estimated according to the formula: [(nθ − nθ*)G PG], where θ
and G are the current congestion level and (assumed) maximum free flow
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speed respectively, and θ* is the desired or 'long run' congestion level when
'capacity' is to be increased to G18. To illustrate this, assume that current
‘capacity’ is G =80km/h, and current traffic density is n =100
(vehicles/km/lane). From Figure 9, we can see that at this density, the
congestion level will be        θ = 0.156 for a maximum achievable speed of Gi =
39 km/h19. Now, suppose we set a target of θ*=0 in the long run. To achieve this
target, the (physical) capacity of the road must be expanded, and hence the
speed-density curve will shift to the right, to such an extent that, at density level
n, maximum achievable speed will now be equal to G . The new ‘capacity’ of
the road can now be measured either by an increase in the free-flow speed
from G  to (a maximum level of) G*, or an increase in free-flow density from n0

to n, or perhaps a mixture of the two, i.e. G  to G1, and n0 to n1 (see Figure 10).
The implicit congestion tax which is being currently collected and which can be
used for the purpose of this capacity expansion is given by the formula: [(nθ −
nθ*)](G PG). From the values obtained from Figure 9, this is equal to [(nθ − nθ*)]=
[(1000.16 − 1)]=1.09 times the current capacity costs (G PG). What this implies is
that if the current toll charges are just sufficient to recover all capacity costs in
a long run equilibrium situation (i.e. when congestion is just about equal to
zero, θ*=0, with a free-flow speed of 80 km/h) and if current congestion level is
0.156 (representing an achievable speed of around 36 km/h), then the user is
implicitly paying some ‘congestion tax’ for this delay. If we measure this delay
in terms of the extra travelling time incurred, then the percentage increase in
average travelling time is [(1/36)-(1/80)]/(1/80) = 22 per cent. The value of
[(nθ - nθ*)]=[(1000.16 - 1)]=1.09 implies that the current users of the road are
willing to pay an extra 109 percent of the current toll (i.e. a little more than
double the current toll) to increase speed from 36 km/h to 80 km/h (or reduce
the congestion level from 0.156 to 0). Figure 11 plots the values of [(nθ - nθ*)] for
various levels of traffic density n and their corresponding congestion level θ (as
shown in Figure 9). These values can be referred to as implicit congestion
taxes which act as an ‘invisible hand’ in guiding users and the supplier of the
congested public infrastructure facility towards a situation of long run optimal
use. The (implicit) taxes reveal the users’ extra willingness-to-pay20 for
additional capacity that can reduce congestion from the current level θ to a
desired level θ* assumed to be zero. Given these signals, the suppliers can
choose to do either (a) nothing, which implies leaving the potential demand for
more capacity unsatisfied, and congestion unaltered, or (b) to invest in extra
capacity using the estimated value of the ‘implicit taxes’ as a guide towards the
optimal level of capacity to be installed in the long run. The supplier can
choose to do (b) by increasing the existing level of capacity charges and using

                                                            
18

 Note that in practice, capacity expansion can be described in terms of either an increase in
maximum free-flow speed G0 (keeping the free-flow traffic density n0 constant) or an increase in
the free-flow traffic density n0 (keeping the maximum free-flow speed G0 constant). We are
considering here only the first case.
19

 With a traffic density level of n = 100, we have: ln(100)=4.605. We derive ln(speed ratio)=
0.72, or speed ratio = 2.05, which gives actual speed = 80/2.05 = 39 km/h.
20

 The existing toll levels in Sydney typically vary from $2.20 to $3.50.
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the extra revenue to expand capacity21, and so long as the implicit tax remains
positive this will imply the existing capacity is less than optimal22.

Next, we consider a different situation when the current level of congestion is
assumed to be due, not to a shortfall of capacity, but to a temporary increase in
the level of traffic demand over and above an assumed long run equilibrium
level, the latter is determined exogenously and independently of the model.
This is ‘case (ii)’ as referred to in the previous section and described in Figure
5. In this case, let m be the current level of traffic density and n0 be the desired
long run equilibrium level (see Figure 12). The analysis of the previous section
suggested that the implicit congestion tax being paid by current users of the
road is equal to (m–n0) [(n0

θ - 1−n0
θ* - 1)GiPG] = (m–n0) [(n0

θ - 1−n0
-1)(n0/m)?θ ](GPG),

where (GPG) is total capacity costs. Figure 13 plots the values of  (m–n0)[(n0
θ -

1−n0
-1)(n0/m)?θ  against the values of m (and its corresponding value of θ) for a

given level of n0 (using the information provided by Figure 9 and assuming that
free flow speed is 80km/h). For example, if m = 130 (vehicles/km/lane) and n0 =
13.3 (vehicles/km/lane) (i.e. about one-tenth of the current level) then from
Figure 13, it can be said that the current users are being charged an implicit
congestion tax equivalent to 350% of the current capacity costs. This implicit
congestion tax is also a measure of the total willingness-to-pay by current
users to reduce the current level of congestion from θ = 0.184 to zero, and
therefore, to increase the speed from 33.5 km/h to 80km/h. In this case,
however, the supplier may choose not to expand capacity but rather to use the
existing congestion level as an implicit tax to ‘ration’ demand to the most
efficient users.

                                                            
21

 Assuming that the level of demand n is not significantly affected by the extra charge,
otherwise, we will consider the existing level of demand n as a mixture of long-run equilibrium
demand (which is to be determined exogenously by factors such as population density, activity
distribution, etc) and short run fluctuation in demand (which is case (ii) considered below).
22

 In this paper, we assume the long-run marginal cost of supply of public infrastructure is
constant at the shadow price level PG. This assumption, however, can be varied without altering
the basic arguments of the analysis.
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Figure 10. Implicit Congestion Tax for case (i): Short Run Capacity
Constraint

Figure 11: Implicit Congestion Tax at different traffic density levels,
assuming that long run congestion level is zero and maximum
free flow speed is 80 km/h.
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Figure 12. Implicit Congestion Tax for case (ii): Short Run Excess
Demand

Figure 13: Implicit Congestion Tax at different traffic density levels (m),
assuming that long run congestion level is zero (long run
traffic density level is n0) and maximum free flow speed is 80
km/h
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Conclusions

In this paper, we have set out to explore the role of public infrastructure
investment in private sector productivity by constructing a model of private
sector activity using public infrastructure as a kind of congested public good
input. The paper establishes the conditions under which optimal provision of
public infrastructure can be said to have been reached. This is when each
individual user pays an ‘effective’ (but unobserved) price or capacity charge for
the use of the public infrastructure which is just sufficient to cover its marginal
productivity, and the aggregate of all these effective charges is also equal to
the supply cost of the infrastructure. When this condition is satisfied, the
‘congestion’ level can be assumed to be at a long run equilibrium level (which
can then be ‘calibrated’ to a ‘reference’ level such as zero). We then proceed to
establish a relationship between the actual levels of public infrastructure
demand (as indicated by the level of traffic density), supply (as indicated by the
level of free flow speed), and the level of congestion. Congestion therefore acts
as a kind of invisible hand or price signal to guide demand and supply for the
infrastructure towards the equilibrium level. We illustrated how these signals
can be used to guide investment in infrastructure capacity towards a long run
equilibrium level. In the context of private sector participation in the optimal
provision of toll roads, our model can provide useful guidelines towards the
determination of an ‘optimal’ set of shadow toll prices for these privately funded
public infrastructure goods.
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